Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution

نویسندگان

  • Yanping Wang
  • Shaogui Guo
  • Shouwei Tian
  • Jie Zhang
  • Yi Ren
  • Honghe Sun
  • Guoyi Gong
  • Haiying Zhang
  • Yong Xu
چکیده

Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) is a non-climacteric fruit. The modern sweet-dessert watermelon is the result of years of cultivation and selection for fruits with desirable qualities. To date, the mechanisms of watermelon fruit ripening, and the role of abscisic acid (ABA) in this process, has not been well understood. We quantified levels of free and conjugated ABA contents in the fruits of cultivated watermelon (97103; C. lanatus subsp. vulgaris), semi-wild germplasm (PI179878; C. lanatus subsp. mucosospermus), and wild germplasm (PI296341-FR; C. lanatus subsp. lanatus). Results showed that ABA content in the fruits of 97103 and PI179878 increased during fruit development and ripening, but maintained a low steady state in the center flesh of PI296341-FR fruits. ABA levels in fruits were highest in 97103 and lowest in PI296341-FR, but no obvious differences in ABA levels were observed in seeds of these lines. Examination of 31 representative watermelon accessions, including different C. lanatus subspecies and ancestral species, showed a correlation between soluble solids content (SSC) and ABA levels in ripening fruits. Furthermore, injection of exogenous ABA or nordihydroguaiaretic acid (NDGA) into 97103 fruits promoted or inhibited ripening, respectively. Transcriptomic analyses showed that the expression levels of several genes involved in ABA metabolism and signaling, including Cla009779 (NCED), Cla005404 (NCED), Cla020673 (CYP707A), Cla006655 (UGT) and Cla020180 (SnRK2), varied significantly in cultivated and wild watermelon center flesh. Three SNPs (-738, C/A; -1681, C/T; -1832, G/T) in the promoter region of Cla020673 (CYP707A) and one single SNP (-701, G/A) in the promoter of Cla020180 (SnRK2) exhibited a high level of correlation with SSC variation in the 100 tested accessions. Our results not only demonstrate for the first time that ABA is involved in the regulation of watermelon fruit ripening, but also provide insights into the evolutionary mechanisms of this phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development

Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an important vegetable crop world-wide. Watermelon fruit quality is a complex trait determined by various factors such as sugar content, flesh color and flesh texture. Fruit quality and developmental process of cultivated and wild watermelon are highly different. To systematically understand the molecular basis of these differences, we ...

متن کامل

Transcriptional Response of Structural and Regulatory Genes Involved in Isoprene Biosynthesis and its Relation to Essential Oil Biosynthesis in Response to Salicylic Acid and Abscisic Acid in Mentha piperita L.

Background: In peppermint, precursors for the biosynthesis of monoterpenes are provided by plastidial methyl-erythritol-phosphate (MEP) pathways. Objective: In order to increase our understanding of terpene metabolism in M. piperita, the effect of salicylic acid (SA) and abscisic acid (ABA) in the modulation of expression pattern of genes involved in essential oil biosynthesis and secretion wa...

متن کامل

A FERONIA-Like Receptor Kinase Regulates Strawberry (Fragaria × ananassa) Fruit Ripening and Quality Formation

Ripening of fleshy fruits is controlled by a series of intricate signaling processes. Here, we report a FERONIA/FER-like receptor kinase, FaMRLK47, that regulates both strawberry (Fragaria × ananassa) fruit ripening and quality formation. Overexpression and RNAi-mediated downregulation of FaMRLK47 delayed and accelerated fruit ripening, respectively. We showed that FaMRLK47 physically interacts...

متن کامل

The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato.

Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the...

متن کامل

Nutritional quality evaluation of four icebox cultivars of watermelon fruit during their development and ripening

Watermelon is a satiating fruit supplemented with health promoting components like sugars, antioxidants mainly lycopene, minerals etc. The biochemical composition, including antioxidants, and the specific activities of enzymes of watermelon fruit of four icebox cultivars were compared at their sequential stages of development and ripening and also an attempt has been made to determine their nut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017